Coulomb interaction

Ewald summation theory

The Coulomb interaction between two charge particles is given by:

\begin{eqnarray*} U\left( r \right)=f\frac{q_{i} q_{j}}{\epsilon_{r}r} \end{eqnarray*}

where electric conversion factor \(f= 1/4\pi \epsilon_0=138.935\text{ }kJ\text{ }mol^{-1}\text{ }nm\text{ }e^{-2}\). The total electrostatic energy of N particles and their periodic images is given by

\begin{eqnarray*} V=\frac{f}{2\epsilon_{r}}\sum\limits_{\mathbf{n}}\sum\limits_{i}^{N}{\sum\limits_{j}^{N}{\frac{{q}_{i}{q}_{j}}{\left| {r}_{ij}+\mathbf{n} \right|}}} \end{eqnarray*}

The electrostatic potential is practically calculated in GALAMOST by

\begin{eqnarray*} U\left( r^{*} \right)=\frac{q^{*}_{i} q^{*}_{j}}{r^{*}} \end{eqnarray*}

The electric conversion factor and relative dielectric constant are considered in the reduced charge. For example, if the mass, length, and energy units are [amu], [nm], and [kJ/mol], respectively, according to Charge units the reduced charge is \(q^{*}=z\sqrt{f^*/{\epsilon }_{r}}\) with \(f^* = 138.935\). The \(z\) is the valence of ion.

The calculation of Coulomb interaction is split into two parts, short-range part and long-range part by adding and subtracting a Gaussian distribution.

\begin{eqnarray*} G\left( r \right)=\frac{\kappa^{3}}{\pi^{3/2}}\mbox{exp}\left(-\kappa^2r^2\right) \end{eqnarray*}

The short-range part including EwaldForce and DPDEwaldForce (for DPD) methods is calculated directly as non-bonded interactions. The long-range part inlcuding PPPMForce or ENUFForce methods is calculated in the reciprocal sum by Fourier transform.

For Coulomb interaction calculation, a short-range method and a long-range method are both needed.

Example:

groupC = galamost.ParticleSet(all_info, "charge")

# real space
ewald = galamost.EwaldForce(all_info, neighbor_list, groupC, 3.0)#(,,r_cut)
app.add(ewald)

# reciprocal space
pppm = galamost.PPPMForce(all_info, neighbor_list, groupC)
pppm.setParams(32, 32, 32, 5, 3.0)
# grid number in x, y, and z directions, spread order, r_cut in real space.
app.add(pppm)

kappa = pppm.getKappa()
# an optimized kappa can be calculated by PPPMForce and passed into EwaldForce.
ewald.setParams(kappa)

Ewald (short-range)

Description:

The short-range term is exactly handled in the direct sum.

\begin{eqnarray*} V^{S}=\frac{f}{2\epsilon_{r}}\sum\limits_{\mathbf{n}}\sum\limits_{i}^{N}\sum\limits_{j}^{N}\frac{{q}_{i}{q}_{j}\mbox{erfc} \left(\kappa\left| {r}_{ij}+\mathbf{n} \right| \right)}{\left| {r}_{ij}+\mathbf{n} \right|} \end{eqnarray*}

The following coefficients must be set:

  • \(\kappa\) - kappa (unitless)
class EwaldForce(all_info, nlist, group, r_cut)

The constructor of an direct Ewald force object for a group of charged particles.

Parameters:
  • all_info (AllInfo) – The system information.
  • nlist (NeighborList) – The neighbor list.
  • group (ParticleSet) – The group of charged particles.
  • r_cut (float) – The cut-off radius.
setParams(string typei, string typej, float kappa)

specifies the kappa per unique pair of particle types.

setParams(float kappa)

specifies the kappa for all pairs of particle types.

Example:

group = galamost.ParticleSet(all_info, "charge")
kappa=0.8
ewald = galamost.EwaldForce(all_info, neighbor_list, group, 3.0)
ewald.setParams(kappa)
app.add(ewald)

Ewald for DPD (short-range)

Description:

In order to remove the divergency at \(r=0\), a Slater-type charge density is used to describe the charged DPD particles.

\begin{eqnarray*} \rho(r)=\frac{q}{\pi\lambda^{3}}e^{-2r/\lambda} \end{eqnarray*}
  • \(\lambda\) - the decay length of the charge (in distance units)

The short-range term is exactly handled in the direct sum.

\begin{eqnarray*} V^{S}=\frac{f}{2\epsilon_{r}}\sum\limits_{\mathbf{n}}\sum\limits_{i}^{N}\sum\limits_{j}^{N}\frac{{q}_{i}{q}_{j}\mbox{erfc} \left(\kappa\left| {r}_{ij}+\mathbf{n} \right| \right)}{\left| {r}_{ij}+\mathbf{n} \right|} \left[1-(1+\beta r_{ij}\mbox{e}^{-2\beta r_{ij}} \right] \end{eqnarray*}

The following coefficients must be set:

  • \(\kappa\) - kappa (unitless)
  • \(\beta=1/\lambda\) - beta (in inverse distance units)
class DPDEwaldForce(all_info, nlist, group, r_cut)

The constructor of an direct Ewald force object for a group of charged particles.

Parameters:
  • all_info (AllInfo) – The system information.
  • nlist (NeighborList) – The neighbor list.
  • group (ParticleSet) – The group of charged particles.
  • r_cut (float) – The cut-off radius.
setParams(string typei, string typej, float kappa)

specifies the kappa per unique pair of particle types.

setParams(float kappa)

specifies the kappa for all pairs of particle types.

setBeta(float beta)

specifies the beta for all pairs of particle types.

Example:

group = galamost.ParticleSet(all_info, "charge")
kappa=0.8
dpd_ewald = galamost.DPDEwaldForce(all_info, neighbor_list, group, 3.0)
dpd_ewald.setParams(kappa)
app.add(dpd_ewald)

PPPM (long-range)

Description:

The long-range term is exactly handled in the reciprocal sum.

\begin{eqnarray*} V^{L}&=&\frac{1}{2V\epsilon_{0}\epsilon_{r}}\sum\limits_{\mathbf{k}\neq0}\frac{\mbox{exp}(-\mathbf{k}^{2}/4\kappa^{2})}{\mathbf{k}^{2}} \left| S(\mathbf{k}) \right|^{2} \\ S(\mathbf{k})&=&\sum\limits_{i=1}^{N}q_{i}\mbox{exp}^{i\mathbf{k} \cdot \mathbf{r}_i} \end{eqnarray*}

The self-energy term.

\begin{eqnarray*} V^{self}&=&\frac{1}{f}\frac{\kappa}{\sqrt{\pi}}\sum\limits_{i=1}^{N}q_{i}^{2} \end{eqnarray*}
  • \(\kappa\) - kappa (unitless)
class PPPMForce(all_info, nlist, group)

The constructor of a PPPM force object for a group of charged particles.

Parameters:
setParams(int nx, int ny, int nz, int order, float r_cut)

specifies the PPPM force with the number of grid points in x, y, and z direction, the order of interpolation, and the cutoff radius of direct force.

setParams(float fourierspace, int order, float r_cut)

specifies the PPPM force with the fourier space, the order of interpolation, and the cutoff radius of direct force. The number of grid points will be derived automatically.

float getKappa()

return the kappa calculated by PPPM force.

Example:

group = galamost.ParticleSet(all_info, "charge")
pppm = galamost.PPPMForce(all_info, neighbor_list, group)
pppm.setParams(32, 32, 32, 5, 3.0)
app.add(pppm)

ENUF (long-range)

class ENUFForce(all_info, nlist, group)

The constructor of an ENUF force object for a group of charged particles.

Parameters:
setParams(float alpha, float sigma, int precision, int Nx, int Ny, int Nz)

specifies the ENUF force with alpha, hyper sampling factor sigma, precision determine the order of interpolation (precision*2+2), and the number of grid points in x, y, and z direction.

Example:

group = galamost.ParticleSet(all_info, "charge")
kappa=0.8
enuf = galamost.ENUFForce(all_info, neighbor_list, group)
enuf.setParams(kappa, 2.0, 2, 32, 32, 32)
app.add(enuf)